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Optimal conditions were calculated for excitation and detection
of the five-quantum coherence of quadrupolar nuclei with I 5 5

2
in

single crystals, observed by the two-pulse sequence (u1)x 2 t1 2
(u2)a 2 t2, where a is the phase cycling angle. Variations in the
pulse lengths, the relative values of the nutation frequency v1 5
gB1, and the quadrupolar frequency vQ as well as in the resonance
offset were taken into account. In addition, the effect of the pulse
length on the intensity of spectral lines was considered. Theoret-
ical results were compared with experiments on 27Al nuclei in an
Al2O3 single crystal. © 1998 Academic Press

Key Words: Five-quantum coherence; 27Al NMR; Al2O3 single
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INTRODUCTION

The first observation of multiquantum coherence was
made in 1959 by a continuous wave method (1). With the
development of computer technology new methods, for ex-
ample Fourier transform spectroscopy and two-dimensional
NMR, were introduced (2). These opened new prospects for
the observation of the multiquantum coherences via various
coherence transfer methods. Although a substantial percent-
age of recent publications concentrate on the development
and application of these methods on liquids, there is a fair
amount of interest also in liquid crystals and solids. In
particular, plenty of experimental work has been done on
quadrupolar nuclei withI 5 1 and 3

2
(3– 8). When the

maximum order (2I) coherence or any of the coherences
2m7 1m is excited, the first order correction due to the
quadrupole coupling does not cause any broadening. How-
ever the second order correction broadens even these coher-
ences in powder samples. The broadening can be averaged
out by different sample rotation techniques, for example,
dynamic angle spinning (DAS) or double rotation (DOR)
(9 –11).

Recently a new method for high-resolution experiments in
quadrupolar solids was introduced by combining multiquan-
tum coherence methods with magic angle sample rotation
(12, 13). Such experiments are now possible with normal
NMR spectrometers and MAS accessories (14 –20). Never-

theless, this method suffers from the same disadvantage as
other multiquantum experiments: the multiquantum excita-
tion and the subsequent conversion to the single-quantum
(1Q) coherence become less efficient when the quadrupole
coupling increases (13, 14).

Here we concentrate on nuclei with the spinI 5 5
2
,

although some computations are also done for spins3
2
, 7

2
, and

9
2
. The efficiency of the excitation and conversion of the 2I

multiquantum coherence is studied for a single crystal. This
maximal order of coherence is chosen because it demon-
strates most clearly the effect of the offset and chemical
shift. Besides, there is only one such transition while for
example the three-quantum (3Q) coherence23

2
7 13

2
, which

is also unshifted by the first order quadrupole correction,
might be disturbed by others 3Q coherences. Both the ex-
citation and conversion are accomplished by one rectangular
RF pulse each. Thus our pulse sequence consists of two
pulses with the phase of the second pulse incremented in
steps of 30° (in the case of the five quantum (5Q) coherence
of I 5 5

2
nuclei). The coherence transfer pathway could

have been selected also by pulsed field gradients but this
method suffers still from a rather low sensitivity (21–24).
Optimal pulse lengths and ratiosv1/vQ (v1 5 gB1 and vQ

is the quadrupolar frequency) are found for the maximal
excitation and conversion efficiency. The efficiency is com-
pared with that of a weak RF irradiation at the exact reso-
nancev0 5 gB0. Also the influence of the resonance offset
is studied. Amoureuxet al. (14) have recently made similar
calculations.

Because of the relatively high value of thev1/vQ required
for observing a sufficiently strong signal from the 5Q coher-
ence, a sample with a lowvQ was chosen. We used a single
crystal of Al2O3 in our experiments. It has the maximum27Al
quadrupolar frequency equal to 179.5 kHz (25). By calculating
Fourier transforms of the acquired induction-decay-like signals
after the phase-incremented two-pulse sequences and by grad-
ually changing the evolution time between the pulses it was
possible to obtain information about the 5Q coherence and test
our computations.
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THEORY

We consider nuclei with the spinI 5 5
2

in a solid, in-
teracting with the external static magnetic fieldB0 and with
the electric field gradient at the nuclear site. The homo-
nuclear dipolar interactions and the second order quad-
rupolar interactions are not taken into account. The energy
levels in the laboratory and rotating frames are shown in
Fig. 1.

In the coordinate frame rotating at the spectrometer
frequencyvr the Hamiltonian without the multiplier\ be-
comes

HQ 5 DvI z 1 ~vQ/3!@3I z
2 2 I 2# . [1]

Here Iz and I are spin operators,Dv 5 vr 2 v0 5 vr 2 gB0

is the resonance offset, and

vQ 5 ~3 cos2u 2 1 1 h sin2u cos 2f !3e2qQ/80\ . [2]

In Eq. [2], e2qQ is the quadrupolar coupling constant,h is the
asymmetry parameter, andu andf are the polar angles ofB0

in the principal axes frame of the quadrupole coupling. When
an RF field at the frequencyvr is applied, Eq. [1] is replaced
by the Hamiltonian

Hr 5 DvI z 1 vQ@3I z
2 2 I ~I 1 1!#/3

2 v1~I xcosa 1 I ysin a ! . [3]

Herea determines the phase of the RF field and it is the angle
which is incremented in phase cycling.

The effect ofHr can be worked out more easily by using the

single-transition operatorsIb
(ij ) (b 5 x, y, z; i, j 5 1, 2, . . .,6),

introduced by Wokaun and Ernst (26) and Vega (27). The
HamiltonianHr can then be written as

Hr 5 ~5Dv 1 20vQ/3!I z
~16! 1 ~3Dv 2 4vQ/3!I z

~15!

1 ~Dv 2 16vQ/3!I z
~14! 1 ~2Dv 2 16vQ/3!I z

~13!

1 ~23Dv 2 4vQ/3!I z
~12!

2 Î5v1@~I x
~12! 1 I x

~56! !cosa 1 ~I y
~12! 1 I y

~56! !sin a #

2 Î8v1@~I x
~23! 1 I x

~45! !cosa 1 ~I y
~23! 1 I y

~45! !sin a #

2 3v1@I x
~34!cosa 1 I y

~34!sin a # . [4]

Initially the system is assumed to be at thermal equilibrium.
The corresponding density matrix, without the temperature-
independent constant term, can be written

r0 5 bIz 5 b~5I z
~16! 1 3I z

~15! 1 I z
~14! 2 I z

~13! 2 3I z
~12! ! [5]

with b 5 v0/[(2I 1 1)kT]. In order to calculate the effect
of a single rectangular pulse on the spin system it is neces-
sary to diagonalize the Hamiltonian [4]. This can be done
by replacing the single-transition operators andHr by
6 3 6 matrices and by finding the matrixT, which diago-
nalizesHr,

Hr
t 5 T21Hr T . [6]

Actually the T matrix is constructed from the eigenvec-
tors of Hr. The density matrixr0 has to be transformed
simultaneouslyr0

t 5 T21r0T. BecauseHr
t does not depend

on time the evolution ofr(t)t is obtained from the ex-
pression

r ~t !t 5 expS 2
i

\
tHr

tDr0
t expS i

\
tHr

tD . [7]

There are five linearly independentIz
(ik) operators in

Hr
t. However, because the commutator [Ip

(ij ), Iz
(ik) 1 Iz

(jk)]
vanishes forp 5 x or y and because the operators belong-
ing to the same transition obey the cyclic commutation
relations [I l

(ik), Im
(ik)] 5 iI n

(ik), it is reasonable to express
Hr

t in terms of cyclically commuting operators including
linearly dependentIz

(ik). For example when one considers
the effect of the diagonalized HamiltonianHr

t on the
term Ix

(56) in the transformed density matrix, the Hamil-
tonian

Hr
t 5 c12

z I z
~12! 1 c13

z I z
~13! 1 c14

z I z
~14! 1 c15

z I z
~15! 1 c16

z I z
~16!

FIG. 1. Energy levels and resonance frequencies ofI 5 5

2
nuclei in (a)

laboratory and (b) rotating frames.
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is rewritten as

Hr
t 5 c12

z I z
~12! 1 c13

z I z
~13! 1 c14

z I z
~14!

1
1

2
~c15

z 1 c16
z !~I z

~15! 1 I z
~16! !

1
1

2
~c16

z 2 c15
z !I z

~56! . [8]

Here the coefficientsc1i are equal to the diagonal matrix
elements (Hr

t)ii . SinceIx
(56) and Iz

(15) 1 Iz
(16) commute, only the

last term of Eq. [8] is relevant and we obtain

exp(2itH r
t )I x

~56!exp~itH r
t ! 5 I x

~56!cosF ~c16
z 2 c15

z !
t

2G
1 I y

~56!sinF ~c16
z 2 c15

z !
t

2G . [9]

After a similar procedure is completed for all the terms ofr0
t ,

the entire density matrix has to be transformed back into the
rotating frame by the inverse transformationr(t) 5 Trt(t)T21.

Then the evolution during the time between the pulses is
calculated. This corresponds to a simple rotation around thez
axes in the 15 subspaces {Ix

(ik), Iy
(ik), Iz

(ik)} with the angular
frequenciesvik 5 (HQ)ii 2 (HQ)kk. The evolution of the density
matrix during the second pulse is solved by repeating the steps
[6]–[9]. This method can in principle be applied to calculate
the response of the system consisting of any finite number of
energy levels after a finite number of pulses.

In order to transform the 5Q coherence into an observable
single-quantum coherence we applied the second pulse (u2)a.
The phase of this pulse,a, was incremented in steps of 30°,
while the reference phase was simultaneously changed in steps

of 180°. The phase of the first pulse was kept unchanged. Thus
a total of 12 phase-cycled sequences were needed to select the
5Q coherence from the various coherences between the pulses.
This procedure automatically restricts the change of the coher-
ence order during the second pulse to66, or from the coher-
ence65 to the coherence71. Moreover, when we set the RF
pulse on the center of the spectrum, thex component of the
acquired signal vanishes, which allows for easy tuning of the
phase of the receiver.

The algorithm described above and the ‘‘Maple’’ program-
ming package were employed in order to calculate the response
of the system on the two-pulse sequences with the described
phase cycling as functions of the pulse lengths, the ratiov1/vQ

and the resonance offset.

EXPERIMENTAL

Experiments were carried out by using the Bruker MSL 300
pulsed NMR spectrometer, operated at the27Al resonance
frequency 52.1 MHz at room temperature. The Al2O3 single
crystal was oriented relative toB0 in such a way that the
splitting between the neighboring lines in the five-line spec-
trum was equal to 2nQ 5 2vQ/2p 5 31.4 kHz (Fig. 2). This
corresponds to the value ofvQ in Eq. [2] equal to 98.63 103

rad/s. The RF field was calibrated by the proton NMR signal
from a rubber sample, measured at the same resonance fre-
quency but at a lower field. An independent calibration was
obtained from the27Al signal after orienting the Al2O3 crystal
in such a way that all the lines collapsed into a single one. The
results of these two methods agreed quite well with each other.
The spin–lattice relaxation timeT1 was observed to be 130 s
for all lines. Unfortunately, because of the long relaxation time
and low signal/noise ratio an acquisition time of 3 h was
needed to determine one experimental point.

RESULTS AND DISCUSSION

We used the algorithm explained above to calculate the
variation of the amplitude of the 5Q coherence, excited by one

FIG. 2. 27Al spectrum in an Al2O3 single crystal withnQ 5 15.7 kHz,
measured atn0 5 52.1 MHz.

FIG. 3. Amplitude of the FQ coherence after one resonant pulse as
functions ofv1/vQ andv1tp1.
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rectangular pulse at the frequencyn0 5 gB0/2p, with v1tp1 and
v1/vQ. The results are shown in Fig. 3, where the variable
v1tp1 is restricted to 10 corresponding roughly to the highest B1

field and the longest pulse which could safely be used. The
maximum is achieved whenv1/vQ 5 2.0 andv1tp1 5 8.0. To
compare the intensities shown in Fig. 3 with experiments, we
used the two-pulse sequence (u1)x 2 t1 2 (u2)a 2 t2, where
the phase-cycled second pulse transforms the 5Q coherence
into the observable 1Q coherence. Fourier transforms of the
acquired signals were calculated relative tot2 and the ampli-
tude of the central line of the spectrum was taken as the
measure of the 5Q coherence.

Figure 4 shows the variation of the27Al 5Q coherence
amplitude with the pulse lengthtp1 in the single crystal of
Al2O3, oriented as explained above, at room temperature. The
ratio v1/vQ was equal to 2.0 for both the pulses, while the
length of the second pulse was chosen to fulfillv1tp2 5 2.6.
The continuous curve represents the cross section of Fig. 3 for
v1/vQ 5 2.0. The agreement between theory and experiment is
fair. Our results agree also with the calculations of Amoureux
et al. (14).

It is also possible to excite multiquantum coherences by a
weak irradiation. For the amplitude of they component of the
5Q coherencec16

y Yatsiv (1) derived the expression

c16
y ~tp1! 5 5b sin@k5/ 2~v1/vQ!4v1tp1# [10]

provided the nuclei (I 5 5
2
) are originally at thermal equilibrium

andv1/vQ ! 1. Heretp1 is the duration of the irradiation and
k5/2 is a numerical factor. The termk5/2(v1

5/vQ
4 ) can be consid-

ered as an effective RF fieldB1
eff multiplied by g. We calcu-

lated the response of the spin system to such an irradiation and

obtained the same result with the coefficientk5/2 equal to
0.013. The smallk5/2 value and the requirementv1/vQ ! 1
mean that very long irradiation times are needed to make
gB1

efftp1 5 p/2. Quite easily tp1 becomes longer than the
relaxation time.

Such a behavior is even more pronounced with nuclei having
larger I values. According to our calculations the coefficientskI

arek7/2 5 1.523 1024 andk9/2 5 8.723 1027. The correspond-
ing effective fields are thenk7/2(v1

7/vQ
6) andk9/2(v1

9/vQ
8) for the

spins7
2

and9
2
, respectively. Therefore a weak irradiation is not as

effective as one hard pulse in exciting the 5Q coherence although
the maximum amplitude of Eq. [10] forI 5 5

2
is 20% larger

than the maximum in Fig. 3 corresponding tov1tp1 5 8.0 and
v1/vQ 5 2.0. A similar picture is obtained for spins3

2
, 7

2
, and9

2
.

However, the value ofv1/vQ corresponding to the maximum
excitation efficiency of the 2I coherence increases withI and is
1.4, 3.4, and 4.8 for the mentioned spins, respectively.

The amount of the 5Q coherence transformed into the ob-
servable 1Q coherence depends, obviously, on the length of the
second pulse. Therefore it is necessary to find also the optimal
length for the second pulse while keeping the first pulse opti-
mized as explained above. Our calculations on the efficiency of
the coherence transfer from the highest order to 1Q show, in
agreement with previous studies (13, 26), thatv1 should be as
high as possible for the maximum efficiency. However, in our
experiment both pulses had the sameB1 field, because it was
close to the highest possible value for the ‘‘fifth’’ channel of
our spectrometer. Figure 5 represents the amplitude of the 1Q
signal, proportional to the 5Q coherence between the pulses,
after the second pulse as a function oftp2 whenv1tp1 5 8.0 and
v1/vQ 5 2.0 for both pulses. The 1Q coherence amplitude also
contains the effect of the satellites. In this sense our results in
Fig. 5 differ from those of Amoureuxet al. (14), who consid-
ered only the transfer to the central transition21

2
7 11

2
. The

FIG. 5. FQ signal amplitude of27Al in Al 2O3 versustp2. tp1 5 40ms,v1tp1

5 8.0, t1 5 10 ms, vQ/2p 5 15.7 kHz, andv1/vQ 5 2.0 for both pulses.

FIG. 4. Amplitude of the27Al FQ coherence after one pulse versustp1 in
an Al2O3 single crystal, observed after phase-cycled two-pulse sequences.tp2

5 14 ms, v1tp2 5 2.6, t1 5 10 ms, vQ/2p 5 15.7 kHz, andv1/vQ 5 2.0 for
both pulses.
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first maximum in Fig. 5 is obtained whenv1tp2 > 2.6. The
experimental points were obtained with the Al2O3 single crys-
tal, oriented as explained above. Deviations of the experimen-
tal data from the theoretical calculations originate mainly from
the rather wide 1Q lines in the spectrum (Fig. 2) and from the
second order quadrupolar correction which were not included
in the calculations. The second order correction does not
broaden the 2I multiquantum coherence in single crystals but it
has some effect on the evolution frequency.

The evolution of the 5Q coherence during the timet1 be-
tween the pulses was studied next. The optimum conditions
were chosen forv1/vQ and the pulse lengths. The spectrometer
frequency was shifted by 3.38 kHz relative togB0/2p. The
acquired signals after the two-pulse sequences were Fourier
transformed relative tot2. The obtained amplitudes of the
central resonance are shown in Fig. 6. When the Fourier
transform of the experimental points of Fig. 6 was calculated
relative tot1, the 5Q coherence spectrum of Fig. 7 was ob-
tained. The spectral line occurs at about 16.5 kHz, or five times
the resonance offset. The spectrum is in principle just a cross
section of the two-dimensional spectrum parallel to thev1 axis.

It is interesting to consider the effect of the chemical shift, or
equivalently of the heteronuclear dipolar interaction, on the
excitation and detection of the 5Q coherence. This can be
studied by introducing an offsetDv for the RF irradiation. Our
calculations show that the 5Q coherence excited by one RF
pulse varies withDv/vQ, as described by the dashed curve in
Fig. 8, whenv1tp1 5 8.0 andv1/vQ 5 2.0. The coherence
amplitude decreases quite fast with the increasing offset. How-
ever, if we use a shorter pulse corresponding to the lower 5Q
coherence maximum atv1tp1 5 3.1 in Figs. 3 and 4, the
decrease is much slower, as shown by the solid curve in Fig. 8.
The dotted curve in Fig. 8 represents the calculated variation of
the 5Q coherence withDv/vQ after phase-cycled two-pulse

sequences, whenv1tp1 5 8.0, v1tp2 5 2.6, andv1/vQ 5 2.0.
The second pulse causes an additional attenuation of the
smaller maxima nearDv/vQ 5 60.8, as can be seen by
comparing the dashed and the dotted curves.

Finally we studied the effect of the pulse length on the
intensity of the spectral lines after one RF pulse at the reso-
nance frequencygB0/2p for certain constant values ofv1/vQ.
In Figs. 9a–9c we represent the variation of the intensity ratio
R 5 Ic/Is as a function ofvQtp for v1/vQ 5 0.1,v1/vQ 5 0.2,
andv1/vQ 5 0.5, respectively. The quantitiesIc andIs are the
intensities of the central and all the satellite lines. According to
the linear response theory the satellite lines in the spectrum
should vanish completely whenvQtp 5 kp (k 5 1, 2, 3, . . .).
For such pulse lengths the intensity ratio should grow very
large, which behavior is qualitatively observed forv1/vQ 5

FIG. 6. Evolution of the FQ coherence duringt1 at the resonance offset
3.37 kHz.vQ/2p 5 15.7 kHz,v1/vQ 5 2.0, v1tp1 5 8.0, andv1tp2 5 2.6.

FIG. 7. FQ coherence spectrum calculated from the data of Fig. 6.

FIG. 8. Calculated variation of the FQ coherence amplitude versus the
resonance offsetDv during one RF pulse (dashed and solid curves withv1tp1

5 8.0 and 3.1, respectively) and during the two-pulse sequence (dotted curve
with v1tp1 5 8.0 andv1tp2 5 2.6) for v1/vQ 5 2.
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0.1 and to a smaller extent forv1/vQ 5 0.2, but forv1/vQ 5
0.5 no trace of such maxima can be found. This is a clear
indication that the system of the quadrupolar spins5

2
cannot be

treated as linear when the flip anglev1tp . p/10. Obvious
explanations for the deviation of the experimental data from
theoretical curves are the finite width of the spectral lines, the
second order quadrupolar effects, and pulse imperfections.

In conclusion we emphasize that multiquantum excitation
and conversion back to an observable signal are most effective
in samples with a relatively low quadrupole coupling, that is,
v1 $ vQ. As long as the quadrupole frequency is less than 300

kHz, multiquantum line widths similar to those of the single
crystal absorption spectrum can be obtained even in polycrys-
talline samples without spinning. For larger quadrupole cou-
plings when the second order correction dominates the line
width, some sample spinning technique is unavoidable.
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